Resonant Frequency Of Slot Antenna

 
Resonant Frequency Of Slot Antenna 6,8/10 8743 reviews

Resonance behavior of single ultrathin slot antennas on finite dielectric substrates in terahertz regime

Abstract

Resonant frequency of slot antenna reception

Resonant Frequency Of Slot Antenna Booster

This cavity-backed slot antenna has a first resonance at about 2.45 GHz. At this frequency, the cavity backed slot antenna is roughly 0.474 wavelengths long - which is roughly the length of a resonant dipole antenna. S11 drops to below -20 dB at this frequency, indicating that most of the power is radiated away. Drastically increase the antenna bandwidth. Double Resonant Slot Antennas with Enhanced Bandwidth If the slot antenna is fed near one edge by a narrow microstrip line at a proper location and for a proper slot width, at a frequency above that of the first resonance, a fictitious short circuit near the microstrip feed may be created. Variations of slot cut patch antennas over wide frequency range are studied. It is observed that the slot does not intro-duce any mode but reduces the higher order mode resonance frequency of the patch and along with the fundamental mode realizes dual band response. The formulations of the resonant length for the mode introduce by the slots in. Resonant frequency can be reduced by making the antenna electrically longer, follow the changes in surface current distribution, try to introduce DMS, DGS, metallic strip, shorting pin, shorted.

Another antenna that resembles a cavity backed slot antenna is the patch antenna, or microstrip patch antenna. This is shown in in Figure 28.4. This antenna also radiates eciently by resonant tunneling. The resonant frequency of the patch antenna (top of Figure 28.4) is roughly when Lis half a wavelength.

We investigate resonance behaviors of optically thin metallic slot antennas on finite substrates in terahertz frequency regime. By carefully analyzing theoretical and experimental results, we observe that slot antennas fabricated in a gold film with a thickness below the skin depth of gold show blueshifted resonance frequencies for the increasing slot width, while the opposite resonance behaviors appear when the slot antennas are perforated in perfectly electric conductor. In addition, we find that for slot antenna sustained by a finite substrate its thickness and the slot width are additional crucial factors determining the resonance frequency of slot antennas.


Publication:
Pub Date:
May 2010
DOI:
10.1063/1.3437091
Frequency
Bibcode:
2010ApPhL..96u1109P
Keywords:
  • resonance;
  • slot antennas;
  • substrates;
  • 84.40.Ba;
  • Antennas: theory components and accessories

Antenna Basic Theory Tutorial Includes:
Basic antenna theoryPolarisationResonance & bandwidthGain & directivityFeed impedance

Radio antennas have a bandwidth over which they can operate effectively; even wideband antennas. Many antennas operate in a resonant mode and this gives them a relatively narrow bandwidth over which they are able to provide excellent performance.

Resonant Frequency Of Slot Antenna Signal

Antenna resonance and bandwidth are two properties for antennas that are closely linked.

Whether the radio antenna is used for broadcasting, TV and radio reception, WLAN, cellular telecommunications, PMR, amateur radio, or any other application, the performance of the antenna is paramount. In this the antenna resonant frequency and the antenna bandwidth are of great importance.

Antenna resonance

A radio antenna is a form of tuned circuit consisting of inductance and capacitance, and as a result it has a resonant frequency. This is the frequency where the capacitive and inductive reactances cancel each other out. At this point the antenna appears purely resistive, the resistance being a combination of the loss resistance and the radiation resistance.

The capacitance and inductance of an RF antenna are determined by its physical properties and the environment where it is located. The major feature of the antenna design is its dimensions. It is found that the larger the antenna or more strictly the antenna elements, the lower the resonant frequency. For example antennas for UHF terrestrial television have relatively small elements, while those for VHF broadcast sound FM have larger elements indicating a lower frequency. Antennas for short wave applications are larger still.

Antenna bandwidth

An antenna bandwidth is governed by whether it is able to operate within the parameters required for that particular application. In some scenarios impedance may be an issue, in others it may be gain, or beamwidth. In this way there are several ways in which the performance of an antenna bandwidth can be judged.

In most cases, antenna are operated around the resonant point. This means that there is only a limited bandwidth over which an RF antenna design can operate efficiently. Outside this the levels of reactance rise to levels that may be too high for satisfactory operation. Other characteristics of the antenna may also be impaired away from the centre operating frequency.

The antenna bandwidth is particularly important where radio transmitters are concerned as damage may occur to the transmitter if the antenna is operated outside its operating range and the radio transmitter is not adequately protected. In addition to this the signal radiated by the RF antenna may be less for a number of reasons.

For receiving purposes the performance of the antenna is less critical in some respects. It can be operated outside its normal bandwidth without any fear of damage to the set. Even a random length of wire will pick up signals, and it may be possible to receive several distant stations. However for the best reception it is necessary to ensure that the performance of the RF antenna design is optimum.

Impedance bandwidth

One major feature of an radio antenna that does change with frequency is its impedance. This in turn can cause the amount of reflected power to increase. If the radio antenna is used for transmitting it may be that beyond a given level of reflected power damage may be caused to either the transmitter or the feeder, and this is quite likely to be a factor which limits the operating bandwidth of an antenna. Today most transmitters have some form of SWR protection circuit that prevents damage by reducing the output power to an acceptable level as the levels of reflected power increase. This in turn means that the efficiency of the station is reduced outside a given bandwidth. As far as receiving is concerned the impedance changes of the antenna are not as critical as they will mean that the signal transfer from the antenna itself to the feeder is reduced and in turn the efficiency will fall. For amateur operation the frequencies below which a maximum SWR figure of 1.5:1 is produced is often taken as the acceptable bandwidth.

In order to increase the bandwidth of an antenna there are a number of measures that can be taken. One is the use of thicker conductors. Another is the actual type of antenna used. For example a folded dipole has a wider bandwidth than a non-folded one. In fact looking at a standard television antenna it is possible to see both of these features included.

Radiation pattern

Another feature of an antenna that changes with frequency is its radiation pattern. In the case of a beam it is particularly noticeable. In particular the front to back ratio will fall off rapidly outside a given bandwidth, and so will the gain. In an antenna such as a Yagi this is caused by a reduction in the currents in the parasitic elements as the frequency of operation is moved away from resonance. For beam antennas such as the Yagi the radiation pattern bandwidth is defined as the frequency range over which the gain of the main lobe is within 1 dB of its maximum.

For many beam antennas, especially high gain ones it will be found that the impedance bandwidth is wider than the radiation pattern bandwidth, although the two parameters are inter-related in many respects.


Antenna bandwidth is a key issue for any radio antenna. Whilst most antennas are operated in a resonant mode, many others are not. Whatever the radio antenna, it has a limited band over which it can operate effectively and within the parameters set out for it.

Resonant

More Antenna & Propagation Topics:
EM wavesRadio propagationIonospheric propagationGround waveMeteor scatterTropospheric propagationCubical quadDipoleDisconeFerrite rodLog periodic antennaParabolic reflector antennaVertical antennasYagiAntenna groundingCoax cableWaveguideVSWRAntenna balunsMIMO
Return to Antennas & Propagation menu . . .